A Review of the Bayesian Occupancy Filter
نویسندگان
چکیده
Autonomous vehicle systems are currently the object of intense research within scientific and industrial communities; however, many problems remain to be solved. One of the most critical aspects addressed in both autonomous driving and robotics is environment perception, since it consists of the ability to understand the surroundings of the vehicle to estimate risks and make decisions on future movements. In recent years, the Bayesian Occupancy Filter (BOF) method has been developed to evaluate occupancy by tessellation of the environment. A review of the BOF and its variants is presented in this paper. Moreover, we propose a detailed taxonomy where the BOF is decomposed into five progressive layers, from the level closest to the sensor to the highest abstractlevelofriskassessment. Inaddition,wepresentastudyofimplementedusecasestoprovide a practical understanding on the main uses of the BOF and its taxonomy.
منابع مشابه
Robust multi-target sensing/tracking in the Bayesian Occupancy Filter framework
We present the “Bayesian Occupancy Filter” (BOF) and the “Fast ClusteringTracking” algorithms as a framework for robust sensing and multi-target tracking using multiple sensors. Perceiving of the surrounding physical environment reliably is a major demanding in smart systems requiring a high level of safety such as car driving assistant, autonomous robots, and surveillance. The dynamic environm...
متن کاملExperiments in Vision-Laser Fusion Using the Bayesian Occupancy Filter
Occupancy Grids have been used to represent the environment for some time. More recently, the Bayesian Occupancy Filter (BOF), which provides both an estimate of likelihood of occupancy of each cell, AND a probabilistic estimate of the velocity of each cell in the grid, has been introduced and patented. This work presents the first experiments in the use of the BOF to fuse data obtained from st...
متن کاملA New Hybrid Framework for Filter based Feature Selection using Information Gain and Symmetric Uncertainty (TECHNICAL NOTE)
Feature selection is a pre-processing technique used for eliminating the irrelevant and redundant features which results in enhancing the performance of the classifiers. When a dataset contains more irrelevant and redundant features, it fails to increase the accuracy and also reduces the performance of the classifiers. To avoid them, this paper presents a new hybrid feature selection method usi...
متن کاملFast classification of static and dynamic environment for Bayesian Occupancy Filter (BOF)
In this paper we present a fast motion detection technique based on laser data and odometry/imu information. This technique instead of performing a complete SLAM (Simultaneous Localization and Mapping) solution, is based on transferring occupancy information between two consecutive data grids. We plan to use the output of this work for Bayesian Occupancy Filter (BOF) framework to reduce process...
متن کاملBayesian occupancy filter based “Fast Clustering-Tracking” algorithm
It has been shown that the dynamic environment around the mobile robot can be efficiently and robustly represented by the Bayesian occupancy filter (BOF) [1]. In the BOF framework, the environment is decomposed into a gridbased representation in which both the occupancy and the velocity distributions are estimated for each grid cell. In such a representation, concepts such as objects or tracks ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 17 شماره
صفحات -
تاریخ انتشار 2017